This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Oxidation Reaction of 1,2,4,3-Triazaphospholo[4,5-A]Quinolines

Boris I. Buzykin^a; Vitalii V. Yanilkin^a; Rimma M. Ēliseenkova^a; Nataliya I. Maksimyuk^a A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russian Federation

To cite this Article Buzykin, Boris I. , Yanilkin, Vitalii V. , Eliseenkova, Rimma M. and Maksimyuk, Nataliya I.(1999) 'Oxidation Reaction of 1,2,4,3-Triazaphospholo[4,5-A]Quinolines', Phosphorus, Sulfur, and Silicon and the Related Elements, 147: 1, 57

To link to this Article: DOI: 10.1080/10426509908053509 URL: http://dx.doi.org/10.1080/10426509908053509

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Oxidation Reaction of 1,2,4,3-Triazaphospholo[4,5-A]Quinolines

BORIS I. BUZYKIN, VITALII V. YANILKIN, RIMMA M. ELISEENKOVA and NATALIYA I. MAKSIMYUK

A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 420088, Russian Federation

It is known that oxidation of 8n,x-electrons heterocycles in the series of 1,4-dihydro-1,2,4,5-tetrazines lead to formation of a stable radical cation salts. In this work the processes of chemical and electrochemical (in MeCN) oxidation of 1-X-1-R¹-2-phenyl-5-methyl-6-R²-1,2-dihydro-1,2,4,3-triazaphospholo[4,5-a]quinolines 1-5 [1]

- representatives of new annelic 8n,x-electrons heterocyclic systems are presented. For all compounds 1-5 multistep electrochemical oxidation is observed. Products of reversible single electron transfer in low potential range are radical cation, determined by cyclic voltametry method. Compounds of P(III) are oxidized more lightly then corresponding compounds of P(V) (ΔEp = 0.4 V). Similarly values of oxidation potentials of compounds 1-4 and 2-(2-phenylhydrazino)-4-methylquinoline, and also a strong influence of substituent R in 2-(2-R-hydrazino)-4-methylquinolines show that N-C=N-N fragment is reaction center in the processes of electrochemical oxidation. Lone pair (LP) phosphorus carry unimportant contribution in high occupied molecular orbital of 8n,x-electrons heterocycle, bat to a marked degree stabilizes radical cation and determines behaviour of molecule in chemical reactions. Triazaphospholoquinolines 1-4 are oxidized by oxygen and react with sulphur leading to the formation phosphoryl- and thiophosphoryl derivatives accordingly.

References

[1] B.I. Buzykin, R.M. Eliseenkova and T.A. Zyablikova, Zh. obshch. khim., 66, 512, (1996).